Package: ccid 1.0.0
ccid: Cross-Covariance Isolate Detect: a New Change-Point Method for Estimating Dynamic Functional Connectivity
Provides efficient implementation of the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2020).
Authors:
ccid_1.0.0.tar.gz
ccid_1.0.0.zip(r-4.5)ccid_1.0.0.zip(r-4.4)ccid_1.0.0.zip(r-4.3)
ccid_1.0.0.tgz(r-4.4-any)ccid_1.0.0.tgz(r-4.3-any)
ccid_1.0.0.tar.gz(r-4.5-noble)ccid_1.0.0.tar.gz(r-4.4-noble)
ccid_1.0.0.tgz(r-4.4-emscripten)ccid_1.0.0.tgz(r-4.3-emscripten)
ccid.pdf |ccid.html✨
ccid/json (API)
# Install 'ccid' in R: |
install.packages('ccid', repos = c('https://anastasiou-andreas.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/anastasiou-andreas/ccid/issues
Last updated 4 years agofrom:d9665a4c4a. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | NOTE | Oct 27 2024 |
R-4.5-linux | NOTE | Oct 27 2024 |
R-4.4-win | NOTE | Oct 27 2024 |
R-4.4-mac | NOTE | Oct 27 2024 |
R-4.3-win | NOTE | Oct 27 2024 |
R-4.3-mac | NOTE | Oct 27 2024 |
Exports:detect.icdetect.thmatch.cpt.tspreaverage
Dependencies:codetoolscorpcordoParallelfdrtoolforeachgdataGeneNetgtoolshdbinsegIDetectiteratorslongitudinalRcppRcppArmadillo