Package: ccid 1.0.0

ccid: Cross-Covariance Isolate Detect: a New Change-Point Method for Estimating Dynamic Functional Connectivity

Provides efficient implementation of the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2020).

Authors:Andreas Anastasiou [aut, cre], Ivor Cribben [aut], Piotr Fryzlewicz [aut]

ccid_1.0.0.tar.gz
ccid_1.0.0.zip(r-4.5)ccid_1.0.0.zip(r-4.4)ccid_1.0.0.zip(r-4.3)
ccid_1.0.0.tgz(r-4.4-any)ccid_1.0.0.tgz(r-4.3-any)
ccid_1.0.0.tar.gz(r-4.5-noble)ccid_1.0.0.tar.gz(r-4.4-noble)
ccid_1.0.0.tgz(r-4.4-emscripten)ccid_1.0.0.tgz(r-4.3-emscripten)
ccid.pdf |ccid.html
ccid/json (API)

# Install 'ccid' in R:
install.packages('ccid', repos = c('https://anastasiou-andreas.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/anastasiou-andreas/ccid/issues

On CRAN:

2.70 score 2 scripts 195 downloads 4 exports 14 dependencies

Last updated 4 years agofrom:d9665a4c4a. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winNOTEOct 27 2024
R-4.5-linuxNOTEOct 27 2024
R-4.4-winNOTEOct 27 2024
R-4.4-macNOTEOct 27 2024
R-4.3-winNOTEOct 27 2024
R-4.3-macNOTEOct 27 2024

Exports:detect.icdetect.thmatch.cpt.tspreaverage

Dependencies:codetoolscorpcordoParallelfdrtoolforeachgdataGeneNetgtoolshdbinsegIDetectiteratorslongitudinalRcppRcppArmadillo