Package: ccid 1.0.0

ccid: Cross-Covariance Isolate Detect: a New Change-Point Method for Estimating Dynamic Functional Connectivity

Provides efficient implementation of the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2020).

Authors:Andreas Anastasiou [aut, cre], Ivor Cribben [aut], Piotr Fryzlewicz [aut]

ccid_1.0.0.tar.gz
ccid_1.0.0.zip(r-4.5)ccid_1.0.0.zip(r-4.4)ccid_1.0.0.zip(r-4.3)
ccid_1.0.0.tgz(r-4.5-any)ccid_1.0.0.tgz(r-4.4-any)ccid_1.0.0.tgz(r-4.3-any)
ccid_1.0.0.tar.gz(r-4.5-noble)ccid_1.0.0.tar.gz(r-4.4-noble)
ccid_1.0.0.tgz(r-4.4-emscripten)ccid_1.0.0.tgz(r-4.3-emscripten)
ccid.pdf |ccid.html
ccid/json (API)

# Install 'ccid' in R:
install.packages('ccid', repos = c('https://anastasiou-andreas.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/anastasiou-andreas/ccid/issues

On CRAN:

Conda:

2.70 score 2 scripts 225 downloads 4 exports 14 dependencies

Last updated 4 years agofrom:d9665a4c4a. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-winNOTEMar 26 2025
R-4.5-macNOTEMar 26 2025
R-4.5-linuxNOTEMar 26 2025
R-4.4-winNOTEMar 26 2025
R-4.4-macNOTEMar 26 2025
R-4.4-linuxNOTEMar 26 2025
R-4.3-winNOTEMar 26 2025
R-4.3-macNOTEMar 26 2025

Exports:detect.icdetect.thmatch.cpt.tspreaverage

Dependencies:codetoolscorpcordoParallelfdrtoolforeachgdataGeneNetgtoolshdbinsegIDetectiteratorslongitudinalRcppRcppArmadillo